Naware Power Plants

Methanol and hydrogen for shipping and chemical industries

Photovoltaic, hydroelectric and wind power alone will not be sufficient to completely cover future energy needs of all sectors. The ocean is an inexhaustible source of energy that is worth harnessing. That's why we develop innovative offshore methanol power plants that are located exactly where clean energy is most needed — at sea. Thus, we create self-sufficient, decentralized filling stations that do not require any infrastructure and generate unlimited energy.

Our Naware power plants produce C02 neutral green hydrogen, oxygen and green methanol. As an alternative, green methane (for the gas market) can also be produced.

The first step is to produce green electricity by using temperature differences in the world's oceans with low temperature heat. In the second step, the green electricity is used for electrolysis and the production of hydrogen. In the third step, the hydrogen is used together with C02 to synthesize methanol.

The transport costs H2 vs. MeOH are indeed of great importance for the total costs. While we pursue option A (all processes at sea), the rest of the world is trying to bring electricity from wind farms to land via power lines, produce the hydrogen there via electrolysis from volatile electricity, and then synthesize methanol from it with CO2 from power plants or biomass as needed.

This is why we can produce more cheaply than the competition.

How Naware Power Plants work

Image

Naware Power Plants are based on a process that takes advantage of temperature differences in the sea and which we call eOTEC. This stands for "enhanced Ocean Thermal Energy Conversion". The production process has been filed for patent and is currently in the testing phase (German pat. pending   under no. 102021115614.9).

The eOTEC process

Image

Cost advantages when generating electricity

  • 24/7/365 operation of the plant (low electricity costs)
  • Neither grid charges nor taxes levied on the electricity price
  • No infrastructure (e.g. power lines) required for  , electricity transport, thus no grid losses
  • Excellent ROI

Process chain

  • By using CO2 as a propellant, green electricity is produced in a highly efficient manner
  • Electricity for electrolysis: for green hydrogen
  • Hydrogen + CO2 (from the air): for synthesis of green methanol
  • Methanol: as a feedstock for the chemical industry and as a renewable synthetic fuel

Two example calculations


Methanol für die Schifffahrt


Ein 100-MW-Naware-Kraftwerk produziert 0,83 TWh Strom im Jahr. Über thermische Transformation werden somit

70 000 Tonnen Methanol

hergestellt.

Damit könnte der für Deutschland bis zum Jahr 2035 erwartete Methanolbedarf mit

max. 1 570 Naware-Kraftwerken

abgedeckt werden.

Werden Naware-Kraftwerke auf dem Meer im Abstand von 5 km aufgestellt, lässt sich der gesamte Methanolbedarf auf einer

Fläche von 176 x 176 km2 

realisieren.

Bei einer Sonneneinstrahlung von 250 W/m2 werden auf einer Fläche von 25 m2 etwa

50 TWh/a Wärme

gespeichert.

Zum Betrieb einer 100-MW-Anlage (Effizienz von eOTEC @ 8%) werden  

nur ca. 10 TWh/a Wärme

benötigt.

Möchte man die gleiche Energie über Photovoltaik herstellen, wäre der

6-fache Platzbedarf

notwendig.